## Composite scores

## 1. The Mean of Composite Scores

A composite score is the score which results from summing two or more scores. Composite scores will be symbolised as C.

It can be shown that the mean of a composite equals the sum of the means of the components. Using $\bar{C}$ as the mean of the composite and
$\bar{X}_{1}, \bar{X}_{2}$, etc. for the means of the components we have:

$$
\begin{equation*}
\bar{C}=\bar{X}_{1}+\bar{X}_{2}+\ldots \bar{X}_{n} \tag{9:1}
\end{equation*}
$$

Proof
(1) $\bar{C}=\frac{\sum C}{N}$
(2) $\sum C=\sum\left(X_{2}+X_{2}+\ldots X_{n}\right)$
(3) By Summation Rule 1. (2) is equal to

$$
\sum X_{1}+\sum x_{2}+\ldots \sum x_{n} .
$$

(4) Therefore:

$$
\frac{\sum C}{N}=\frac{\sum X_{1}}{N}+\frac{\sum X_{2}}{N}+\ldots \frac{\sum X_{n}}{N}
$$

(5) The values on the right are of course means so

$$
\bar{C}=\bar{X}_{1}+\bar{X}_{2}+\ldots \bar{X}_{n}
$$

$S_{x y}$
Sometimes a composite score is the sum of weighted components.
For example $C$ might equal $2 X_{1}+1.5 X_{2}+k X_{3}$, the weights being 2 for $X, 1.5$ for $X_{2}$, and $k$ for $X_{3}$. Let us symbolise weights as $W_{1}$, $W_{2} \ldots W_{\mathrm{n}}$, then:

$$
\begin{equation*}
\bar{C}=W_{1} \bar{X}_{1}+W_{2} \bar{X}_{2}+\ldots W_{n} \bar{X}_{n} \tag{9:2}
\end{equation*}
$$

Proof
(1) $\quad C=\left(W_{1} X_{1}+W_{2} X_{2}+\ldots W_{n} X_{n}\right)$
(2) $\quad \sum C=($ using Summation Rule 1)

$$
\sum W_{1} X_{1}+W_{2} X_{2}+\ldots \sum W_{n} X_{n}
$$

(3) So $\frac{\sum C}{N}=\frac{\sum W_{1} X_{1}}{N}+\frac{\sum W_{2} X_{2}}{N}+\ldots \frac{\sum W_{n} X_{n}}{N}$
(4) So $\bar{C}=W_{1} \bar{X}_{1}+W_{2} \bar{X}_{2}+\ldots W_{n} \bar{X}_{n}$

## 2. The Covariance

Before considering the variance of a composite it will be worth recalling the covariance and some computational formulae connected with it. The covariance has been mentioned before in the chapter on correlation. It is defined as the mean of the products of subjects' deviation scores on two tests. Using $S_{x y}$ as the symbol for the covariance:

$$
\begin{equation*}
S_{x y}=\frac{\sum\left(X-M_{2}\right)\left(Y-M_{y}\right)}{N}=\frac{\sum x y}{N} \tag{9:3}
\end{equation*}
$$

It will be recalled that one formula for $r_{x y}$ was:

$$
\begin{equation*}
r_{x y}=\frac{\sum x y}{N \sigma_{x} \sigma_{y}} \tag{9:4}
\end{equation*}
$$

From this it follows that:

$$
S_{x y}=\frac{1}{N} \sum x y=r_{x y} \sigma_{x} \sigma_{y}
$$

That is the mean product of the deviation scores equals the product of the correlation coefficient and the two standard deviations. A convenient formula for the covariance is:

$$
\begin{equation*}
S_{x y}=\frac{\sum X Y}{N}-M_{x} M_{y} \tag{9:6}
\end{equation*}
$$

Proof
(1) $\quad\left(X-M_{x}\right)\left(Y-M_{y}\right)=X Y+M_{x} M_{y}-M_{x} Y-M_{y} X$
(2) $\quad \sum\left(X-M_{x}\right)\left(Y-M_{y}\right)=\sum X Y+N M+N M_{x} M_{y}-M_{x} \sum Y-M_{y} \sum X$
(3) Dividing by $N$ gives:

$$
\frac{\sum\left(X-M_{x}\right)\left(Y-M_{y}\right)}{N}=\frac{\sum X Y}{N}+M_{x} M_{y}-M_{x} \frac{\sum_{N} Y}{N}-M_{y} \frac{\sum X}{N}
$$

(4) But $\frac{\sum Y}{N}=M_{y}$; and $\frac{\sum X}{N}=M_{x}$

So the right hand term becomes: $\frac{\sum X Y}{N}-M_{x} M_{y}$

## 3. The Variance of a Composite Score

By now the formula for the variance is familiar, i.e.

$$
\frac{\sum\left(X-M_{x}\right)^{2}}{N}
$$

so the formula for the variance of a composite will be:

$$
\begin{align*}
& \sigma_{C}^{2}=\frac{\sum(C-\bar{C})^{2}}{N} \\
& =\frac{\sum\left[\left(X_{1}+X_{2}+\ldots X_{n}\right)-\left(\bar{X}_{1}+\bar{X}_{2}+\ldots \bar{X}_{n}\right)\right]^{2}}{N} \tag{9:7}
\end{align*}
$$

The last term can be written in deviation scores:

$$
\begin{equation*}
\sigma_{C}^{2}=\frac{\sum\left[\left(X_{1}+X_{2} \ldots X_{n}\right)-\left(\bar{X}_{1}+\bar{X}_{2}+\ldots \bar{X}_{n}\right)\right]^{2}}{N} \tag{9:8}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{\sum\left[\left(X_{1}-\bar{X}_{1}\right)+\left(X_{2}-\bar{X}_{2}\right)+\ldots\left(X_{n}-\bar{X}_{n}\right)\right]^{2}}{N} \\
& =\frac{\sum\left(x_{1}+x_{2} \ldots x_{n}\right)^{2}}{N}
\end{aligned}
$$

An easy way to work out all of the values involved in $\left(x_{1}+x_{2}+\ldots x_{n}\right)^{2}$ is to prepare a square table thus:

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\ldots$ | $x_{n}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{1}$ |  |  |  |  |  |
| $x_{2}$ |  |  |  |  |  |
| $x_{3}$ |  |  |  |  |  |
| $\ldots$ |  |  |  |  |  |
| $x_{n}$ |  |  |  |  |  |

The body of the table is formed by multiplying the marginal elements. As follows:-

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\ldots$ | $x_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}$ | $x_{1}{ }^{2}$ | $x_{1} x_{2}$ | $x_{1} x_{3}$ | $\ldots$ | $x_{1} x_{n}$ |
| $x_{2}$ | $x_{1} x_{2}$ | $x_{2}{ }^{2}$ | $x_{2} x_{3}$ | $\ldots$ | $x_{2} x_{n}$ |
| $x_{3}$ | $x_{1} x_{3}$ | $x_{2} x_{3}$ | $x_{3}{ }^{2}$ | $\ldots$ | $x_{3} x_{n}$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $x_{n}$ | $x_{1} x_{n}$ | $x_{2} x_{n}$ | $x_{3} x_{n}$ | $\ldots$ | $x_{n}^{2}$ |

Thus for each individual we have:
(a)

$$
x_{1}^{2}+x_{2}^{2}+\ldots x_{n}^{2} \text { and }
$$

(b)

$$
2 x_{1} x_{2}+2 x_{1} x_{3}+\ldots 2 x_{(n-1)} x_{n}
$$

Summing across individuals and dividing by $N$ gives:

$$
\begin{align*}
& \frac{\sum\left(x_{1}+x_{2} \ldots x_{n}\right)^{2}}{N} \\
& =\frac{\sum\left(x_{1}^{2}+x_{2}^{2}+\ldots x_{n}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+\ldots 2 x_{(n-1)} x_{n}\right)}{N} \tag{9:9}
\end{align*}
$$

But by definition $\frac{\sum x_{1}^{2}}{N}=\sigma_{1}^{2}$, etc., and $\frac{\sum x_{1} x_{2}}{N}=$ covariance $x_{1} x_{2}=S_{x_{1} x_{2}}$, etc. The variance of a composite is therefore equal to the sum of the variances of the components plus twice the sum of all possible covariances:

$$
\begin{equation*}
\sigma_{C}^{2}=\sigma_{x_{1}}^{2}+{ }_{x_{2}}^{2}+\ldots \sigma_{x_{n}}^{2}+2 S_{x_{1} x_{2}}+2 S_{x_{1} x_{3}}+\ldots .2 S_{x_{(n-1)} x_{n}} \tag{9:10}
\end{equation*}
$$

But from (9:5) $2 S_{x_{1} x_{2}}=2 r_{x_{1} \times 2} \sigma_{x_{1}} \sigma_{x_{2}}$ (9:10) can be written as:

$$
\sigma_{C}^{2}=\sigma_{1_{1}}^{2}+\sigma_{x_{2}}^{2}+\ldots \sigma_{x_{n}}^{2}+2 r_{x_{1} x_{2}} \sigma_{x_{1}} \sigma_{x_{2}}+\ldots 2 r_{\left.x_{(n-1)}\right)_{n}} \sigma_{x_{(n-1)}} \sigma_{x_{n}}
$$

If the variables are weighted the variance can again be worked out fairly simply by using a square table.

|  | $W_{1} x_{1}$ | $W_{2} x_{2}$ | $W_{3} x_{3}$ | $\ldots$ | $W_{n} x_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $W_{1} x_{1}$ | $W_{1}^{2} x_{1}^{2}$ | $W_{1} W_{2} x_{1} x_{2}$ | $W_{1} W_{3} x_{1} x_{3}$ | $\ldots$ | $W_{1} W_{n} x_{1} x_{n}$ |
| $W_{2} x_{2}$ | $W_{1} W_{2} x_{1} x_{2}$ | $W_{2}{ }^{2} x_{2}^{2}$ | $W_{2} W_{3} x_{2} x_{3}$ | $\ldots$ | $W_{2} W_{n} x_{2} x_{n}$ |
| $W_{3} x_{3}$ | $W_{1} W_{3} x_{1} x_{3}$ | $W_{2} W_{3} x_{2} x_{3}$ | $W_{3}^{2} x_{3}^{2}$ | $\ldots$ | $W_{3} W_{n} x_{3} x_{n}$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $W_{n} x_{n}$ | $W_{1} W_{n} x_{1} x_{n}$ | $W_{2} W_{n} x_{2} x_{n}$ | $W_{3} W_{n} x_{3} x_{n}$ | $\ldots$ | $W_{n}^{2} x_{n}^{2}$ |

The variance of a composite of weighted components will therefore be:

$$
\begin{align*}
& \sigma_{C}^{2}=W_{1}^{2} \sigma_{x_{1}}^{2}+W_{2}^{2} \sigma_{x_{2}}^{2}+\ldots W_{n}^{2} \sigma_{x_{n}}^{2}+2 W_{1} W_{2} S_{x_{1} x_{2}}  \tag{9:12}\\
& +\ldots 2 W_{(n-1)} W_{n} S_{x_{(n-1)} x_{n}}
\end{align*}
$$

For many purposes it is useful to look at the variances of composite variables slightly differently. Such variances are made up of a variance for each of $n$ tests and a number of terms of the type $2 r_{r_{i, i}} \sigma_{i} \sigma_{j}$. The sum of the variances will be $\sum \sigma^{2}$. and the mean variance will be $\frac{\sum \sigma^{2}}{N}=\bar{\sigma}^{2}$. From this it follows that $\sum \sigma^{2}=n \bar{\sigma}^{2}$. Similarly $\sum r_{i j} \sigma_{i} \sigma_{j}=n(n-1) \overline{r_{i j} \sigma_{i} \sigma_{j}}$, as there are $n(n-1)$ covariance terms. This number is simply the number of terms in the $n \times n$ table minus the number of variance terms $=n^{2}-n=n(n-1)$. Hence:

$$
\begin{equation*}
\sigma_{C}^{2}=\bar{n}^{2}+n(n-1) \overline{r_{i j} \sigma_{i} \sigma j} \tag{9:13}
\end{equation*}
$$

If the component scores were in $Z$ score form the $\sigma$ 's would disappear and in $Z$ score terms (9:13) would become:

$$
\begin{equation*}
\sigma_{C}^{2}=n+n(n-1) \overline{r_{i j}} \tag{9:14}
\end{equation*}
$$

(formula in terms of Z score components).

## 4. Correlation of a Composite Variable with an Outside Variable

Recalling the formula for $r_{x y} r_{x y}=\frac{\sum x y}{N \sigma_{x} \sigma_{y}}$, it can be seen that the correlation between a composite variable © and an outside variable (0) will be:

$$
\begin{equation*}
r_{O C}=\frac{\sum x_{0} x_{C}}{N \sigma_{0} \sigma_{C}}=\frac{\sum x_{0}\left(x_{1}+x_{2}+\ldots x_{n}\right)}{N \sigma_{0} \sigma_{C}} \tag{9:15}
\end{equation*}
$$

This equals:

$$
\frac{\sum x_{0} x_{1}+\sum x_{0} x_{2}+\ldots \sum x_{0} x_{n}}{N \sigma_{0} \sigma_{C}}
$$

which in turn equals:

$$
\frac{\frac{1}{N}\left(\sum x_{0} x_{1}+\sum x_{0} x_{2} \ldots \sum x_{0} x_{n}\right)}{\sigma_{0} \sigma_{C}}
$$

The terms in the numerator are now all covariance terms and the above can therefore be written (following (9:5)), as:

$$
\frac{\sigma_{0} \sigma_{1} r_{01}+\sigma_{0} \sigma_{2} r_{02}+\sigma_{0} \sigma_{n} r_{0 n}}{\sigma_{0} \sigma_{C}}
$$

Dividing by $\sigma_{0}$ gives:

$$
\begin{equation*}
r_{0 C}=\frac{\sigma_{1} r_{01}+\sigma_{2} r_{02}+\ldots \sigma_{n} r_{0 n}}{\sigma_{C}} \tag{9:16}
\end{equation*}
$$

In $Z$ score terms this becomes (finding $\sigma_{C}$ as the square root of (9:13)):

$$
\begin{equation*}
r_{0 C}=\frac{\sum r_{o i}}{\sqrt{n+n(n-1) \overline{r_{i j}}}}=\frac{n \overline{r_{o i}}}{\sqrt{n+n(n-1) \overline{r_{i j}}}} \tag{9:17}
\end{equation*}
$$

For reasons which will become apparent in a moment it is convenient to divide numerator and denominator by $n$ giving:

$$
\begin{equation*}
r_{0 C}=\frac{\overline{r_{o i}}}{\sqrt{\frac{n}{n^{2}}+\frac{n(n-1)}{n^{2}}} \overline{r_{i j}}}=\frac{\overline{r_{o i}}}{\sqrt{\frac{1}{n}+\frac{n-1}{n} \overline{r_{i j}}}} \tag{9:18}
\end{equation*}
$$

As $n$ increases in size, i.e. as the number of components increases, the value of $\frac{1}{n}$ becomes smaller and smaller, and $\frac{n-1}{n}$ becomes nearer and nearer to 1 . So with a large number of components, as $n$ approaches infinity:

$$
\begin{equation*}
r_{0 C}=\frac{\overline{r_{o i}}}{\left.\sqrt{\sqrt{r_{i j}}} ; n \rightarrow \infty\right) \text {. } n \rightarrow \infty .} \tag{9:19}
\end{equation*}
$$

In words the correlation between a composite variable and an outside variable is equal to the mean correlation between components and the outside variable, divided by the square root of the mean intercorrelation between components.

## 5. Correlation between two Composite Variables

Suppose that $C_{X}=\left(X_{1}+X_{2}+\ldots X_{n}\right)$ and $C_{Y}=\left(Y_{1}+Y_{2}+\ldots Y_{n}\right)$,
And that there are $n$ components in $C_{x}$ and $m$ components in $C_{Y}$.

$$
r_{C_{X} C_{y}} \text { will be } \frac{\sum\left(x_{1}+x_{2}+\ldots x_{n}\right)\left(y_{1}+y_{2}+\ldots y_{m}\right)}{N \sigma_{C_{x}} \sigma_{C_{y}}}
$$

By steps which will by now be familiar this becomes firstly:

$$
\begin{equation*}
\frac{\sum x_{1} y_{1}+\sum x_{1} y_{1}+\ldots \sum x_{n} y_{m}}{N \sigma_{C_{x}} \sigma_{C_{r}}} \tag{9:20}
\end{equation*}
$$

In turn this becomes:

$$
\begin{equation*}
\frac{r_{x_{1} y_{1}} \sigma_{x_{1}} \sigma_{y_{1}}+r_{x_{1} y_{2}} \sigma_{x_{1}} \sigma_{y_{2}}+\ldots r_{x_{n} y_{m}} \sigma_{x_{n}} \sigma_{y_{m}}}{\sigma_{C_{x}} \sigma_{C_{y}}} \tag{9:21}
\end{equation*}
$$

As $\sum r_{x_{i} y_{i}} \sigma_{x_{i}} \sigma_{y_{i}}=n m \overline{r_{x_{i} y_{i}} \sigma_{x_{i}} \sigma_{y_{i}}}$ (9:21) becomes:

$$
\begin{equation*}
\frac{n m \overline{r_{x_{i} y_{i}} \sigma_{x_{i}} \sigma_{y_{i}}}}{\sqrt{n \bar{\sigma}_{x_{i}}^{2}+n(n-1)} \overline{r_{x_{i} x_{j}} \sigma_{x_{i}} \sigma_{x_{j}}} \sqrt{m \bar{\sigma}_{y_{i}}^{2}+m(m-1) \bar{r}_{y_{i} y_{j}} \sigma_{y_{i}} \sigma_{y_{j}}}} \tag{9:22}
\end{equation*}
$$

If all components are in $Z$ score form, this becomes:

$$
\begin{equation*}
\frac{n m \overline{r_{x_{i} y_{i}}}}{\sqrt{n+n(n-1) \overline{r_{x_{i}, i_{i}}} \sqrt{m+m(m-1)} \overline{r_{y_{i} y_{j}}}}} \tag{9:23}
\end{equation*}
$$

Dividing numerator and denominator by $n m$ gives:

$$
\begin{gather*}
\frac{\overline{r_{x_{i} y_{i}}}}{\sqrt{\frac{n}{n^{2}}+\frac{n(n-1) \overline{n^{2}} \overline{r_{x_{i} x_{j}}} \sqrt{\frac{m}{m^{2}}+\frac{m(m-1)}{m^{2}} \overline{r_{y_{i}, y_{j}}}}}{}}}=\frac{\overline{r_{x_{i} y_{i}}}}{\sqrt{\frac{1}{n}+\frac{n-1 \overline{r_{x_{i}}} \overline{r_{i}}}{} \sqrt{\frac{1}{m}+\frac{m-1 \overline{r_{y_{i}, y_{j}}}}{m}}}} \tag{9:24}
\end{gather*}
$$

As the number of components in each composite becomes larger $\frac{1}{n}$ and $\frac{1}{m}$ become closer to zero, and $\frac{n-1}{n}$ and $\frac{m-1}{m}$ become nearer to 1. Therefore, as $n$ and $m$ approach infinity we obtain:

$$
\begin{equation*}
\frac{\overline{r_{x, y_{i}}}}{\sqrt{r_{x_{x, x},}} \sqrt{r_{y_{y, y_{j}}}}} \tag{9:25}
\end{equation*}
$$

## Problems

A. Suppose a composite is formed of three tests $X_{1}, X_{2}$, and $X_{3}$, each with a mean of 10 and a standard deviation of 3 . If $r_{x_{1} x_{2}}=.30, r_{x_{1} x_{3}}=.40$, and $r_{x_{2} x_{3}}=.50$, what will be the mean and variance of the composite scores?
B. A composite is made up of four tests $X_{1}, X_{2}, X_{3}$, and $X_{4}$, with $M_{x_{1}}=10, \quad M_{x_{2}}=20, \quad M_{x_{3}}=30, M_{x_{4}}=40$; and $\sigma_{x_{1}}=2, \sigma_{x_{2}}=3, \sigma_{x_{3}}=4$, and $\sigma_{x_{4}}=5$. If $r_{x_{1} x_{2}}=.20, r_{x_{1} x_{3}}=.30$, $r_{x_{1} x_{4}}=.30, r_{x_{2} x_{3}}=.40, r_{x_{2} x_{4}}=.40$, and $r_{x_{3} x_{4}}=.20$, what is the mean of the composite and what is its variance?
C. Given a weighted composite $C=2 X_{1}+3 X_{2}$, and $r_{12}=.40$; $M_{x_{1}}=10$, and $M_{x_{2}}=20$; and $\sigma_{X_{1}}=5$ and $\sigma_{x_{2}}=6$, what is the mean of $C$ and what is its variance?
D. Given two composites $X$ and $Y$ what will be their correlation given the following data on the composites:

|  | $X_{2}$ | $Y_{1}$ | $Y_{2}$ | $Y_{3}$ | $M$ | $\sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{1}$ | .20 | .10 | .20 | .30 | 10 | 3 |
| $\mathrm{X}_{2}$ |  | .20 | .30 | .40 | 15 | 4 |
| $Y_{1}$ |  |  | .50 | .60 | 20 | 5 |
| $Y_{2}$ |  |  |  | .40 | 25 | 5 |
| $Y_{3}$ |  |  |  |  | 30 | 5 |

Use Formula (9:21).

## Answers

A. $\bar{C}=\bar{X}_{1}+\bar{X}_{2}+\bar{X}_{3}=10+10+10=30$

$$
\begin{aligned}
\sigma_{C}^{2} & =\sigma_{X_{1}}^{2}+\sigma_{X_{2}}^{2}+\sigma_{X_{3}}^{2}+2 r_{X_{1} X_{2}} \sigma_{X_{1}} \sigma_{X_{2}}+2 r_{X_{1} X_{3}} \sigma_{X_{1}} \sigma_{X_{3}}+2 r_{X_{2} X_{3}} \sigma_{X_{2}} \sigma_{X_{3}} \\
& =9+9+9+2(.30 \times 3 \times 3)+2(.40 \times 3 \times 3)+2(.50 \times 3 \times 3) \\
& =+48.6 .
\end{aligned}
$$

B. $\bar{C}=10+20+30+40=100$

$$
\begin{aligned}
\sigma_{C}^{2}= & +9+16+25+2(.20 \times 2 \times 3)+2(.30 \times 2 \times 4) \\
& +2(.30 \times 2 \times 5)+2(.40 \times 3 \times 4)+2(.40 \times 3 \times 5)+2(.20 \times 4 \times 5) \\
= & 96.8
\end{aligned}
$$

C. $\bar{C}=W_{1} \bar{X}_{1}+W_{2} \bar{X}_{2}=(2 \times 10)+(3 \times 20)=80$

$$
\begin{aligned}
\sigma_{C}^{2}= & W_{1}^{2} \sigma_{X_{1}}^{2}+W_{2}^{2} \sigma_{X_{2}}^{2}+2 W_{1} W_{2} r_{X_{1} X_{2}} \sigma_{X_{1}} \sigma_{X_{2}} \\
& =(4 \times 25)+(9 \times 36)+(2 \times 2 \times 3 \times .40 \times 5 \times 6) \\
& =568 .
\end{aligned}
$$

D.

$$
r_{C_{x} C_{y}}=\frac{r_{X_{1} Y_{1}} \sigma_{X_{1}} \sigma_{Y_{1}}+r_{X_{1} Y_{2}} \sigma_{X_{1}} \sigma_{Y_{2}}+r_{X_{1} Y_{3}} \sigma_{X_{1}} \sigma_{Y_{3}}}{+r_{X_{2} Y_{1}} \sigma_{X_{2}} \sigma_{Y_{1}}+r_{X_{2} Y_{2}} \sigma_{X_{2}} \sigma_{Y_{2}}+r_{X_{2} X_{3}} \sigma_{X_{2}} \sigma_{Y_{3}}} ⿻ \sigma_{C_{X}} \sigma_{C_{Y}}
$$

$$
\begin{aligned}
\text { The numerator }= & (.10 \times 3 \times 5)+(.20 \times 3 \times 5) \\
& +(.30 \times 3 \times 5)+(.20 \times 4 \times 5) \\
& +(.30 \times 4 \times 5)+(.40 \times 4 \times 5) \\
= & 27.0
\end{aligned}
$$

The denominator $=$

$$
\left.\begin{array}{rl}
\sqrt{\sigma_{C_{X}}^{2}} & =\sqrt{9+16+2(.20 \times 3 \times 4)}=\sqrt{29.8} \\
\sqrt{\sigma_{{C_{Y}}_{Y}}^{2}} & =\sqrt{25+25+25+2(.50 \times 5 \times 5)+2(.60 \times 5 \times 5)} \\
+2(.40 \times 5 \times 5)
\end{array}\right] .
$$

Therefore $r_{C_{X} C_{Y}}=\frac{27.0}{\sqrt{29.8} \sqrt{150}}=.40$

## 6. The Multiple Regression Equation Again

On reflection it will by now be clear that in multiple regression, the regression weights combined appropriately with the raw scores or $Z$ scores yield weighted composite scores. These scores when correlated with the criterion scores result in the multiple correlation coefficient. Thus $R_{0.12 . . n}$, although it expresses the relationship between a number of variables and the criterion, is in fact the correlation between only two variables - the weighted composite variable and the criterion.

Thus the mean score on the predicted variable and its variance can be worked out from the formulae for weighted composites. It is merely necessary to substitute $\beta$ 's or $b$ 's for the $w$ 's in Formulae 9:2 and 9:12. It can be shown that the mean of the composite will equal the mean of the criterion.

$$
\begin{equation*}
\hat{M}_{0}=M_{0} \tag{9:26}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \hat{M}_{0}=\text { the mean of the predicted scores, and } \\
& M_{0}=\text { the mean of the criterion scores }
\end{aligned}
$$

Proof
(1) $\quad \hat{X}_{0}=M_{0}-b_{1} M_{1}-\ldots b_{n} M_{n}+b_{1} X_{1}+\ldots b_{n} X_{n}$
(2) $\quad \hat{M}_{0}=\frac{\sum\left(M_{0}-b_{1} M_{1}-\ldots b_{n} M_{n}+b_{1} X_{1}+\ldots b_{n} X_{n}\right)}{N}$
(3) $=\frac{N M_{0}-b_{1} N M_{1}-b_{n} N M_{n}+b_{1} \sum X_{1}+\ldots b_{n} \sum X_{n}}{N}$
(4) $=M_{0}-b_{1} M_{1}-\ldots b_{n} M_{n}+b_{1} M_{1}+\ldots b_{n} M_{n}$
(5) $=M_{0}$

The variance of the predicted scores will be:

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\sum b_{i}^{2} \sigma_{i}^{2}+2 \sum b_{i} b_{j} \sigma_{i} \sigma_{j} r_{i j} \tag{9:27}
\end{equation*}
$$

Proof
Once more a table will help in working out the products of the weighted deviation scores:

|  | $b_{1} x_{1}$ | $b_{2} x_{2}$ | $\ldots$ | $b_{n} x_{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| $b_{1} x_{1}$ | $b_{1}{ }^{2} x_{1}{ }^{2}$ | $b_{1} x_{1} b_{2} x_{2}$ | $\ldots$ | $b_{1} x_{1} b_{n} x_{n}$ |
| $b_{2} x_{2}$ | $b_{1} x_{1} b_{2} x_{2}$ | $b_{2}{ }^{2} x_{2}^{2}$ | $\ldots$ | $b_{2} x_{2} b_{n} x_{n}$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $b_{n} x_{n}$ | $b_{1} x_{1} b_{n} x_{n}$ | $b_{2} x_{2} b_{n} x_{n}$ | $\ldots$ | $b_{n}^{2} x_{n}{ }^{2}$ |

Summing these values across individuals will give:
(1) $\sum \hat{x}_{0}^{2}=b_{1}^{2} \sum x_{1}^{2}+b_{2}^{2} \sum x_{2}^{2}+\ldots b_{n}^{2} \sum x_{n}^{2}+2 b_{1} b_{2} \sum x_{1} x_{2}+\ldots 2 b_{(n-1)} b_{n} \sum x_{(n-1)} x_{n}$
(2) Dividing by $N$ gives:

$$
b_{1}^{2} \sigma_{1}^{2}+b_{2}^{2} \sigma_{2}^{2}+\ldots b_{n}^{2} \sigma_{n}^{2}+2 b_{1} b_{2} \sigma_{1} \sigma_{2} r_{12}+\ldots 2 b_{(n-1)} b_{n} \sigma_{(n-1) n}
$$

(3) This equals:

$$
\sum b_{i}^{2} \sigma_{i}^{2}+2 \sum b_{i} b_{j} \sigma_{i} \sigma_{j} r_{i j}
$$

## Problems

A. If $r_{01}=.30, r_{02}-.40$, and $r_{12}=.50$, write the Z score regression equation for predicting 0 from 1 and 2 .
B. What will be the mean of the predicted scores? (Use the formula for the mean of a weighted composite.)
C. What will the variance of the predicted scores be? (Use the formula for the variance of a weighted composite.)

Answers
A. $Z_{0}=\beta_{1} Z_{1}+\beta_{2} Z_{2} ; \beta_{1}=\frac{r_{01}-r_{02} r_{12}}{1-r_{12}^{2}}$
and $\beta_{2}=\frac{r_{02}-r_{01} r_{12}}{1-r_{12}^{2}}$
Therefore $\beta_{1}=\frac{.30-(.40 \times .50)}{1-.50^{2}}=.13$

$$
\beta_{2}=\frac{.40-(.30 \times .50)}{1-.50^{2}}=.33
$$

Therefore $Z_{0}=.13 Z_{1}+.33 Z_{2}$
B. $\quad \hat{M}_{Z_{0}}=.13 M_{Z_{1}}+.33 M_{Z_{2}}=0$
C. (1) A square table will help:

|  | $\beta_{1} Z_{1}$ | $\beta_{2} Z_{2}$ |
| :--- | :--- | :--- |
| $\beta_{1} Z_{1}$ | $\beta_{1}^{2} Z_{1}^{2}$ | $\beta_{1} \beta_{2} Z_{1} Z_{2}$ |
| $\beta_{2} Z_{2}$ | $\beta_{2} \beta_{1} Z_{2} Z_{1}$ | $\beta_{2}^{2} Z_{2}^{2}$ |

(2) Summing across individuals and dividing by $N$ gives:

$$
\hat{\sigma}_{Z_{0}}^{2}=\beta_{1}^{2} \frac{\sum Z_{1}^{2}}{N}+\beta_{2}^{2} \frac{\sum Z_{2}^{2}}{N}+2 \beta_{1} \beta_{2} \frac{\sum Z_{1} Z_{2}}{N}
$$

(3) As $\frac{\sum Z_{1}^{2}}{N}$ and $\frac{\sum Z_{2}^{2}}{N}$ equal 1; and as $\frac{\sum Z_{1} Z_{2}}{N}$ equals $r_{12}$ we obtain:
(4) $\hat{\sigma}_{Z_{0}}^{2}=\beta_{1}^{2}+\beta_{2}^{2}+2 \beta_{1} \beta_{2} r_{12}$

$$
\begin{aligned}
& =.13^{2}+.33^{2}+(2 \times .13 \times .33 \times .50) \\
& =.17
\end{aligned}
$$

(5) Therefore $\hat{\sigma}_{Z_{0}}=.41$.

According to (8:13) $\hat{\sigma}_{0}=R_{0.12} \sigma_{0}$.
Does this agree with the answer just obtained?

